

Lessons Learned from a Novice HIV Pharmacist

HIV Pharmacy Education Day 2025
Mikaela Klie RPh, PharmD, AAHIVP

- **About me:**
 - Community Pharmacist – Prime Care Pharmacy
 - HIV Pharmacy Consulting – Hive Health Services
- **Goal:**
 - Share a real-world case to build foundational skills in HIV care
 - Designed for those newer to HIV practice
- **Focus:**
 - Where to start, what resources to use, how to find information

Pharmacy Consult:

Can you assess for
regimen simplification?

Patient VS

- 53 year old, cisgender female
- HIV History → HIV+ 1996 (life insurance required test)
- Allergies → Nevirapine (Stevens-Johnson Syndrome)
- Drug Coverage → private plan

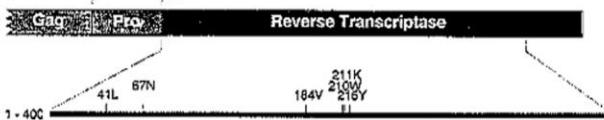
Medications

- progesterone 100mg daily
- estradiol 1mg daily
- Genvoya (FTC/TAF/EVG/cobi)
one tablet daily
- darunavir 800mg daily
- recently stopped rosuvastatin
10mg daily

Lesson 1

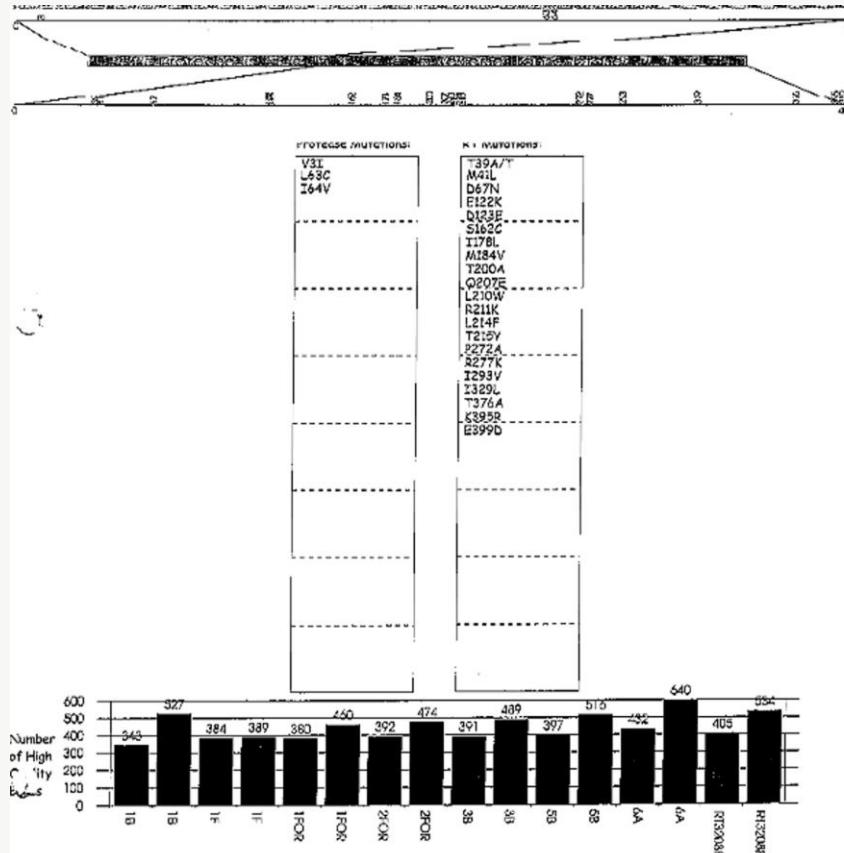
The Power of a Good ARV History

DATE	REGIMEN	COMMENTS
1996 - 1998	AZT + ddi	
1998	d4T + 3TC + NVP	Johnson Syndrome secondary to NVP
1998-2003?	d4T, 3TC, SOZ	second son type
2003-2006?	drug holiday	otype
Dec 2006 - Nov 2007	TDF + 3TC + SOZ	
Nov 2007 - Jul 2014	TDF/FTC + SOZ	
Jul 2014 - Jun 2016	DTG + ABC/3TC + DRV 800mg + RTV	
Jun 2016 - Oct 2019	ABC/3TC/DTG + DRV 800mg + RTV	
Oct 2019 - Present	FTC/TAF/EVG/c + DRV 800mg	


**Viral load
undetectable since
March 2007**

Understanding Genotypes & Resistance

- Genotypic testing detects resistance mutations in relevant viral genes
- Requires viral load \geq 250 copies/mL
- Mutation shorthand:
 - Example \rightarrow M184V: methionine (M) \rightarrow valine (V) at position 184
- Mutations help identify reduced ARV susceptibility
- Viral load sample \rightarrow Public Health Ontario \rightarrow BCCE for genotyping \rightarrow Interpretation
- Watch the three part CHAP 101 Learning Series: Tackling ART Resistance by Linda Robinson


Resistance-associated mutations identified:

1 - 99

Subtype analysis¹
Clade B

Drug	Matches in database	Proportion of matched samples:			Fold change in IC ₅₀ (Cut-off for normal/susceptible range)	Ref.
		within normal susceptible range	above normal susceptible range	above normal non-susceptible range		
NRTI						
Retrovir®	Zidovudine	741	25	50	23.2 (4.0)	
Epivir®	Lamivudine	436			46.3 (4.5)	
Videx®	Didanosine	197			1.6 (2.0)	
Hivid®	Zalcitabine	200			1.9 (2.0)	
Zerit®	Stavudine	294			1.5 (1.8)	
NNRTI						
Viread™	Tenofovir DF	28			1.3 (3.0)	4
PI						
Crixivan®	Indinavir	5,699			0.7 (3.0)	
Norvir®	Ritonavir	5,704			0.7 (3.5)	
Viracept®	Nelfinavir	5,690			0.9 (4.0)	
Invirase®, Fortovase®	Saquinavir	5,666			0.7 (2.0)	
Agenerase®	Amprenavir	4,923			0.7 (2.0)	
A component of Kaletra®	Lopinavir	920			0.8 (2.5)	3

January 5, 1999

NRTI - 41L, 67N, 184V, 211K, 210W, 215Y

SUMMARY REPORT

	DRUGS	FOLD CHANGE ¹	CUT-OFF ²	RESISTANCE ANALYSIS ³	CLINICAL NOTES <small>see p2 for details</small>		
NRTI / NtRTI mutations: 211K							
NRTI/NRTI	Retrovir®	Zidovudine	1.0	1.9	14.4	MAXIMAL RESPONSE	
	Epivir®	Lamivudine	0.9	1.1	3.7	MAXIMAL RESPONSE	
	Videx®	Didanosine	0.8	1.3	3.0	MAXIMAL RESPONSE	
	Hivid®	Zalcitabine	0.9		3.0	SUSCEPTIBLE	
	Zerit®	Stavudine	0.8	1.1	2.2	MAXIMAL RESPONSE	
	Ziagen®	Abacavir	0.7		2.1	SUSCEPTIBLE	
	Emtriva®	Emtricitabine	0.8		3.7	SUSCEPTIBLE	
	Viread®	Tenofovir DF	0.8	1.0	2.0	MAXIMAL RESPONSE	
NNRTI mutations: 283wt/I							
NNRTI	Viramune®	Nevirapine	1.2	5.2		SUSCEPTIBLE	
	Descriptor®	Delavirdine	1.6		7.7	SUSCEPTIBLE	
	Sustiva® , Stocrin®	Efavirenz	1.0		3.4	SUSCEPTIBLE	
PI mutations: 77wt/I							
PI	Crixivan®	Indinavir	0.7	0.8	2.2	MAXIMAL RESPONSE	
	Crixivan®; boosted	Indinavir/r	0.7	4.1	21.2	MAXIMAL RESPONSE	
	Norvir®	Ritonavir	0.7		2.4	SUSCEPTIBLE	
	Viracept®	Nelfinavir	0.9	1.0	1.5	MAXIMAL RESPONSE	
	Invirase®	Saquinavir	0.6	0.7	1.0	MAXIMAL RESPONSE	
	Invirase®; boosted	Saquinavir/r	0.6	1.1	12.0	MAXIMAL RESPONSE	
	Agenerase®	Amprenavir	0.6	0.7	1.4	MAXIMAL RESPONSE	
	Agenerase®; boosted	Amprenavir/r	0.6	0.9	6.5	MAXIMAL RESPONSE	
	Lexiva®; Telzir®	Fosamorenavir	0.6		1.8	SUSCEPTIBLE	
	Kaletra®	Atazanavir	0.8	10.0	10.0	MAXIMAL RESPONSE	
	Roxytaz®	Atazanavir	2.7		2.0	SUSCEPTIBLE	
	Aptivus®	Tipranavir	0.7	1.6		SUSCEPTIBLE	

1. Predicted fold change in virus inhibitory concentration (IC50), relative to a susceptible reference virus. 2. Cut Off values for maximal and minimal clinical response (Clinical Cut-off) as per normal clinical practice. 3. Resistance Analysis based on the magnitude of the Fold Change relative to the Clinical or the Biological Cut-Offs. See page 3 for definitions.

September 27, 2006

NRTI - 211K

NNRTI - 283wt/I

PI - 77wt/I

Stanford Drug Resistance Database

 Stanford University
HIV DRUG RESISTANCE DATABASE
A curated public database to represent, store and analyze HIV drug resistance data.

HOME GENOTYPE-RX GENOTYPE-PHENO GENOTYPE-CLINICAL HIVDB PROGRAM VISTAS PROGRAM ABOUT HIVDB SUPPORT HIVDB!

HIVDB Algorithm Version 9.8
Jan 05, 2025

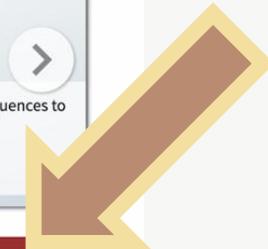
Sierra 3.5.3
release notes / web service
Jan 05, 2025

HIV Drug Resistance Tutorials
NRTI / NNRTI / PI / INSTI / HIVDR Interpretation Program
Jun 02, 2024

HIVDB Viral Sequence and Treatment Submission (VISTAS) Program
HIV, HBV, HCV Genbank submission tool
Jun 28, 2024

GenBank2PubMed
Connect GenBank virus sequences to publications
May 07, 2025

HIVdb Program
Drug Resistance Summaries (Download PDF)
PIs NRTIs NNRTIs INSTIs CAIs


HIV Drug Resistance Tutorials
NRTIs NNRTIs PIs INSTIs
HIVDR Interpretation Program
Questions or suggestion are welcomed: hivdrteam@lists.stanford.edu

HIVDB released on Sep 26, 2025
Query / Download

Genotype-treatment
ARV selection data comprising 236,806 protease, 251,203 RT, 40,313 integrase and 25,362 capsid HIV-1 virus sequences from 279,615 persons; 1,091 protease, 898 RT and 358 integrase HIV-2 virus sequences from 1,153 persons. In vitro selection data includes 1,111 HIV-1 in vitro selection data of PR, RT and IN.

Genotype-phenotype
Drug susceptibility data comprising 30,676 PI, 24,762 NRTI, 15,180 NNRTI and 5,644 INI susceptibility results from HIV-1 virus isolates

Genotype-clinical
Clinical outcome data comprising genotype, treatments, plasma HIV-1 RNA levels and CD4 counts from

HIVdb Program: Mutations Analysis

HIVdb accepts user-submitted protease, RT, and integrase sequences or mutations and returns inferred levels of resistance to the most commonly used protease, nucleoside, non-nucleoside, and integrase inhibitors. Its purpose is educational and as such it provides extensive comments and a highly transparent scoring system that is hyperlinked to data in the HIV Drug Resistance Database. A detailed description of the program as well as all updates is in the [Release Notes](#). A [web service](#) has been created to allow users to access HIVdb programmatically.

New: this program is now available for analyzing SARS-CoV-2 mutations, FASTA, and FASTQ (NGS) sequences.

Protease, RT, and integrase mutations can be entered using either the text box or auto-suggestion boxes. To use the text box, type each mutation separated by one or more spaces. The consensus wildtype and separating commas are optional. If there is a mixture of more than one amino acid at a position, write both amino acids (an intervening slash is optional). Insertions should be indicated by "Insertion" and deletions by "Deletion".

Drug display options

By default, results will be shown for checked ARVs. Use checkboxes for additional ARVs. ([select all](#))

NRTI: ABC AZT FTC 3TC TDF D4T DDI

INSTI: BIC CAB DTG EVG RAL

NNRTI: DOR EFV ETR NVP RPV DPV

PI: ATV/r DRV/r LPV/r FPFV/r IDV/r NFV SQV/r TPV/r

[Input mutations](#) [Input sequences](#) [Input sequence reads](#)

Reverse Transcriptase

M41L x D67N x M184V x R211K x L210W x T215Y x L283I x | Enter/paste mutations

40	41	44	62	65	67	68	69
70	74	75	77	90	98	100	101
103	106	108	115	116	118	138	151
179	181	184	188	190	210	215	219
221	225	227	230	234	236	238	318
348							

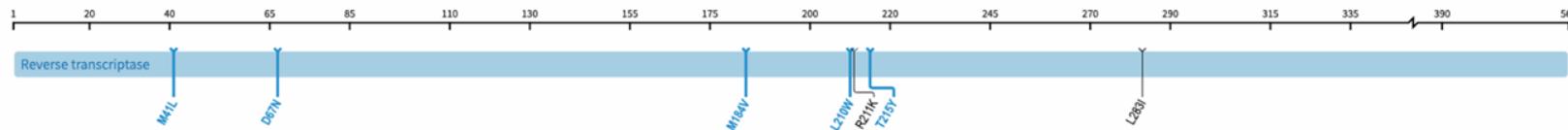
Protease

V77I x | Enter/paste mutations

10	11	13	20	23	24	30	32
33	35	36	43	46	47	48	50
53	54	58	63	71	73	74	76
77	82	83	84	85	88	89	90
93							

Integrase

| Enter/paste mutations


51	66	74	92	95	97	114	118
121	128	138	140	143	145	146	147
148	149	151	153	155	163	165	230
232	263						

Save input mutations in my browser for future use

Reset

Analyze

Reverse transcriptase (RT)

There are no known mutation quality issues.

Drug resistance interpretation: PR

HIVDB 9.8 (2025-01-05)

PI Major Mutations: None
PI Accessory Mutations: None
PR Other Mutations: V77I

Protease Inhibitors

atazanavir/r (ATV/r) Susceptible
darunavir/r (DRV/r) Susceptible
lopinavir/r (LPV/r) Susceptible

Mutation scoring: PR

HIVDB 9.8 (2025-01-05)

No drug resistance mutations were found for PI.

Drug resistance interpretation: RT

HIVDB 9.8 (2025-01-05)

NRRTI Mutations: **M41L • D67N • M184V • L210W • T215Y**
NNRTI Mutations: None
RT Other Mutations: R211K • L28I

Nucleoside Reverse Transcriptase Inhibitors

abacavir (ABC) High-Level Resistance
zidovudine (AZT) High-Level Resistance
emtricitabine (FTC) High-Level Resistance
lamivudine (3TC) High-Level Resistance
tenofovir (TDF) High-Level Resistance

Non-nucleoside Reverse Transcriptase Inhibitors

doravirine (DOR) Susceptible
efavirenz (EFV) Susceptible
etravirine (ETR) Susceptible
nevirapine (NVP) Susceptible
rilpivirine (RPV) Susceptible

RT comments

NRTI

- M41L is a TAM that usually occurs with T215Y. In combination, M41L plus T215Y confer intermediate / high-level resistance to AZT and d4T and contribute to reduced ddi, ABC and TDF susceptibility.
- D67N is a non-polymorphic TAM associated with low-level resistance to AZT.
- M184V/I cause high-level in vitro resistance to 3TC and FTC and low/intermediate resistance to ABC (3-fold reduced susceptibility). M184V/I are not contraindications to continued treatment with 3TC or FTC because they increase susceptibility to AZT and TDF and are associated with clinically significant reductions in HIV-1 replication.
- L210W is a TAM that usually occurs in combination with M41L and T215Y. The combination of M41L, L210W and T215Y causes high-level resistance to AZT and intermediate resistance to ABC and TDF.
- T215Y/F are TAMs that causes intermediate/high-level resistance to AZT and potentially low-level resistance to ABC and TDF.

Assessment

- Stanford resistance profile shows **high-level resistance** to the **entire NRTI class**
- **Severe allergy to nevirapine (SJS)** → concern for cross-sensitivity with NNRTIs
- No evidence of NNRTI re-exposure since the reaction → avoid unless no alternatives
- Can we simplify??

Use Your Community

- CHAP google group → poll the country!
- CHAP observership opportunities
- Expert and experienced colleagues
- Medical liaisons

Alternatives

2

B/F/TAF alone

- Use with TAF mutations is off-label
- Canadian study switching to B/F/TAF in the presence of 1-8 NRTI mutations → 98% maintained suppression
 - 2 had same 5 NRTI RAMs; 9 were on same baseline regimen
- Trial with close VL monitoring
- If virologic rebound occurs → add DRV/c

1

B/F/TAF + DRV/c

- Remains PI-based, two-tablet regimen
- Modernizes integrase inhibitor from EVG → BIC
- Simple, safe, and effective switch

3

DTG/3TC + DRV/c

- PI-based, two-tablet regimen
- Modernizes integrase inhibitor from EVG → DTG
- HBV immunity confirmed

Outcome

- VS met with the physician to discuss simplifying her regimen to B/F/TAF alone
- **VS declined any change!** She reported feeling great with her current regimen and prefers to remain on current therapy due to concerns about tolerating switches
- Valuable learning gained through the case despite no change

Thank you!

Do you have
any comments
or questions?