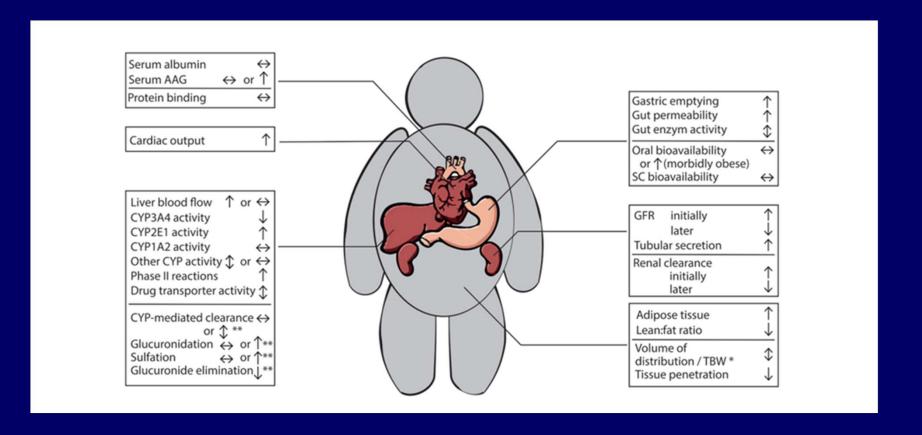
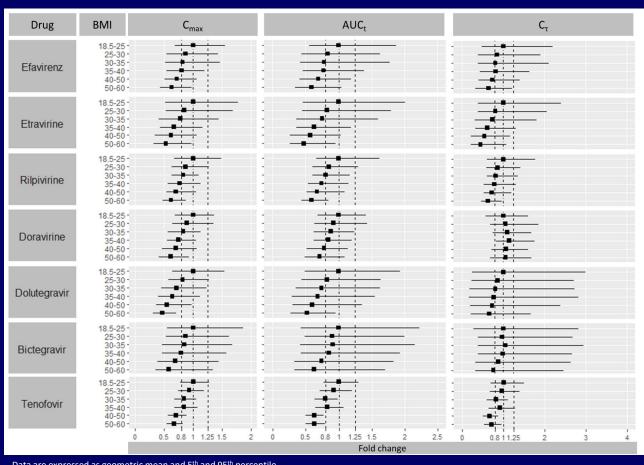
Long-acting Cabotegravir/Rilpivirine after Bariatric Surgery. A good idea in theory.....

Sue Gill, Bsc.Phm, MGH Alice Tseng, PharmD, TGH


Introduction

- Increasing rates of obesity in people with HIV
- Aging population
- Side effect of newer ARVs (INSTIs, TAF)

 Bariatric surgery is emerging as an effective treatment option for obesity

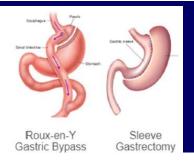

Antiretroviral PK can be influenced by both weight & bariatric surgery

Impact of Obesity on Drug Dispostion

Reduced exposure of ARVs as BMI increases

Effect of obesity on PK parameters of selected antiretrovirals:

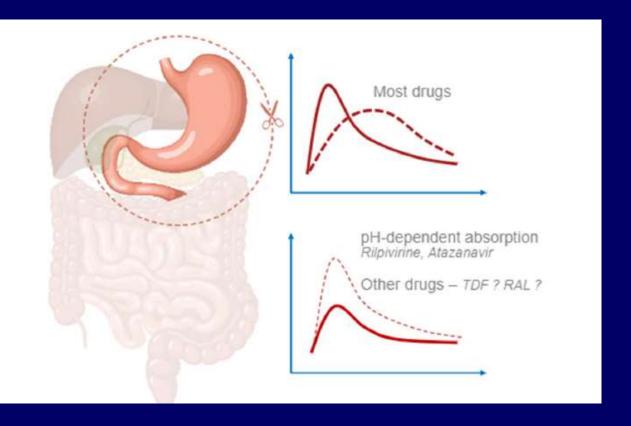
- Our simulations showed that obesity reduces the exposure of all investigated ARVs.
- Greatest decreases with etravirine, lowest change with doravirine
- Ctrough less impacted due to greater redistribution of drug from the tissue into the bloodstream.


Berton M et al., Clinical Infectious Diseases [epub ahead of print]. Slide courtesy of M. Berton.

Data are expressed as geometric mean and 5th and 95th percentile.

% of virtual obese individuals with Cτ levels below the clinical target concentration threshold

	Darunavir / ritonavir	Efavirenz	Etravirine	Rilpivirine	Doravirine	Dolutegravir	Bictegravir	Raltegravir
Target threshold (ng/mL)	550	700	300	50	230	300	760	20
BMI 18.5-25 kg/m ²	10	1	21	4	19	9	8	0
BMI 25-30 kg/m ²	0	4	41	6	18	9	3	0
BMI 30-35 kg/m ²	0	3	38	4	8	15	3	0
BMI 35-40 kg/m ²	3	3	54	11	2	15	4	0
BMI 40-50 kg/m ²	1	4	58	24	12	14	7	0
BMI 50-60 kg/m ²	0	9	72	45	11	13	6	0

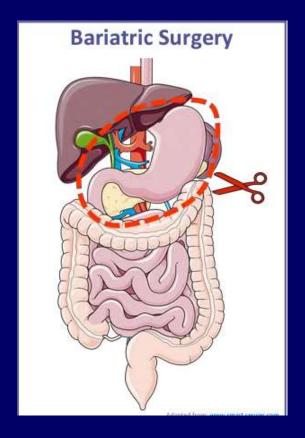

- Predicted % of virtual obese individuals with CT levels below the clinical target concentration threshold were similar to those observed in the SHCS data.
- Etravirine and rilpivirine present the highest risk of suboptimal exposure in individuals with BMI > 40 kg/m².

Gastric Surgery: influence on drug PK

Gastrectomy

- Many ARVs absorbed in the stomach onwards
- Plenty of redundancy in absorptive mucosa
- · Delayed peak (Tmax)
- Issue with pH-dependent absorption

Impact of Bariatric Surgery on ARVs


Drug	Description	Operation	PK effect
TDF	Case report	RYGB	\leftrightarrow
	Series (N=8)	SG	\leftrightarrow
	Series (N=4)	SG	Transient/reversible TFV
	Series (PreP; N=4)	SG, others	TFV Ctrough ↓
TAF	No Data		
3TC	Case	SG	No PK
	Case	SG	↑ PK post op
	Case (pregnant)	SG	↓ PK (pregnant reference)
ABC	Case	SG	↑ PK post op
	Series (N=2)	SG	\leftrightarrow

Drug	Description	Operation	PK effect
DRVr	Case (bd)	RYGB	()
	Case (bd)	RYGB	Transient ↓ (in therapeutic range)
	Case (od)	SG	Therapeutic range
	Series (od; N=7)	SG	No PK (6), undetectable (1)
DRVc	Case	SG	No PK
ATV(r)	Series (4;	SG	Unboosted ↓ PK pre, ↓↓ PK, 2
	3 boosted)		failures
	Case	SG	(NB: RTV in normal range)
	Series	SG/RYGB	J PK
	Series	banding	2 ATV failures
		1	1 ATV failure

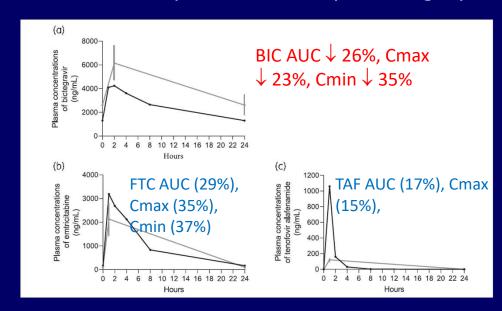
Drug	Description	Operation	PK effect
EFV	3	SG	
NVP	Case	SG	\leftrightarrow
ETR	6	SG	
RPV	No Data		↓ PK likely - AVOID
DOR	No	Data	

Drug	Description	Operation	PK effect
DTG (od)	Series (N=6)	SG/RYG8/banding (2 each)	All suppressed
	Series (N=4) Case	RYGB SG	(↓) PK (in therapeutic range) ↑ PK post op
RTG	Series (N=7)	SG	↓ PK in 3/7 V failures
EVG	Case	SG	No PK

Effect of Bariatric Surgery on ARV absorption

- PK changes after sleeve gastrectomy or gastric bypass
 - $-\downarrow$ gastric motility, volume, \uparrow pH, possible $\downarrow 1^{\text{st}}$ pass effect
 - Avoid atazanavir, oral rilpivirine
- ARV exposures reported (esp early post-surgery)
 - Consider temporary ↑ ARV dose and/or TDM
- PrEP: ↓ tenofovir
 - some suggestions to double TDF/F for 1st month
 - Use daily vs. event-driven PreP
- Role of LA-CAB/RPV (or IM CAB) for treatment/PreP????

Additional considerations for oral ARVs post-bariatric surgery


Issue	Post-surgery	ARVs impacted
Food requirements	Limited intake	Rilpivirine, Pls
Tablet size	Often preference for liquids	Often limited information on crushing ARVs; volume of liquid formulations
Drug interactions	Gastric acid reducing agents	Atazanavir, rilpivirine
	Cations, supplements	INSTIs

Bictegravir/tenofovir alafenamide/emtricitabine in bariatric surgery

• 2 case reports:

- 56 yo Caucasian female [wt 92.9 kg] post sleeve gastrectomy, required BID multivitamins and calcium supplements. Remained virologically suppressed by introducing adequate spacing.
- 64 yo Caucasian female [wt not indicated] post gastrectomy with Roux-en-Y reconstruction. Bictegravir PK decreased 2 months post surgery, remained virally suppressed.

Reduced exposures of BIC post-surgery:

How about using LA-cabotegravirrilpivirine post-bariatric surgery?

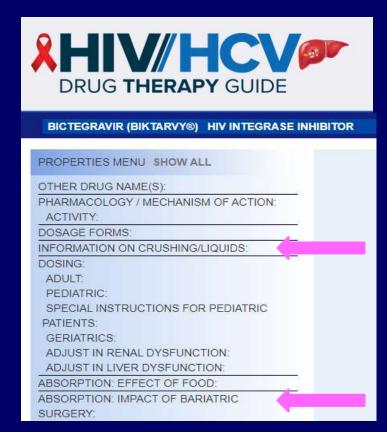
Benefits

- Bypasses GI tract: no DDIs with oral medications or food requirements
- Not reliant on the gut for absorption post-surgery
- No manipulation of formulation required
- Dosed bi-monthly
- Decrease stigma and pill fatigue

Potential drawbacks

- No data in clinical trials of patients with BMI 63 kg/m2 (range BMI 30-54 kg/m2)
- High BMI was identified as risk factor for virologic failure
- Longer needles difficult to source
- Window for injection is ± 7 days from due date, reliable clinic appointment attendance is key
- NB: skip oral lead-in to avoid DDIs post surgery

Cutrell et al.AIDS 2021;35: 161-8. Rizzadini et al. J Acquir Immune Defic Syndr 2020;85(4): 498-506.


Predictors of HIV-1 Virologic Failure to Long-acting Cabotegravir/Rilpivirine

- Week 152 data pooled analysis of FLAIR/ATLAS/ATLAS-2M
 - N=1651; 1.4% had confirmed virologic failure (CVF)
- ≥2 baseline factors associated with increased risk of CVF:
 - RPV RAMS
 - HIV-1 subtype A6/A1
 - BMI \geq 30 kg/m²
- Lower CAB Ctrough_{week4} and CAB & RPV Ctrough_{week44} (≤1st quartile) significant as additional factors, but did not improve prediction of CVF beyond ≥2 baseline factors

Questions? Resources

- www.hivdruginteractions.org/prescribing resources/hiv-guidance-gastricsurgery
- Zino et al. Clin Pharmacokinet 2022;61:619-35
- Role of TDM to guide dosing?

https://hivclinic.ca/app/