Low omega-3 index in erythrocytes is a risk factor for progression of atherosclerosis in people living with HIV

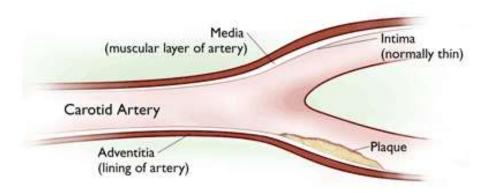
Bianca M Arendt, M Smieja, IE Salit, DWL Ma, F Smaill, D Elston, E Lonn, Johane P Allard

HIV and Co-morbidities November 18, 2013, 3:10 pm **Abstract Number 141**

CHANGING THE COURSE OF THE HIV PREVENTION, ENGAGEMENT AND TREATMENT CASCADE

Disclosures

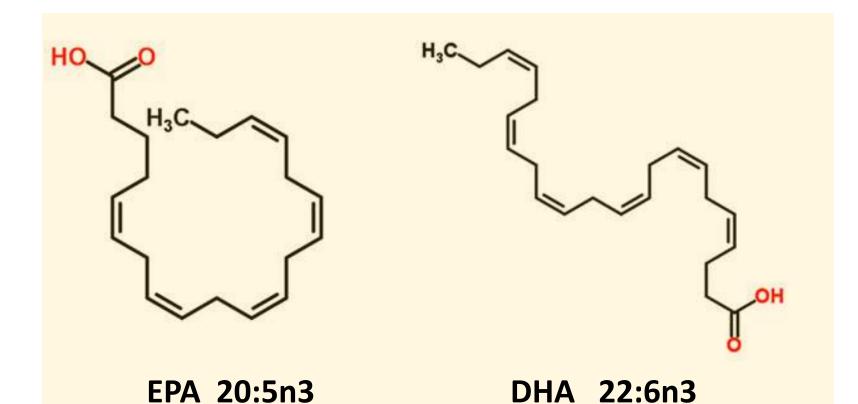
- M Smieja: Investigator-Intiated Grants Gilead Sciences Canada, Pfizer
- DWL Ma: Consultant Heinz, Pepsi, Vegetable Oils Industry of Canada
- JP Allard: Advisory Board, Consultant, Unrestricted Grants Baxter, Abbott
- Other authors: No Conflict of Interest to declare
- Study funded by:


Additional support Gilead Sciences Canada

Cardiovascular disease risk in HIV

- HIV infection is associated with increased risk of CVD
 - surrogate markers
 - o carotid intima media thickness (CIMT)
 - o arterial stiffness, endothelial dysfunction, platelet function
 - cardiovascular events

○ relevance ↑ in aging population



Risk factors for CVD in PLHIV

- Classic risk factors
 - \circ Age
 - Metabolic parameters
 - o dyslipidemia, diabetes, hypertension
 - Genetic predisposition
 - o family history, gender, ethnicity
 - Lifestyle
 - o diet, exercise, alcohol & drug use

- HIV specific factors
 - Viral infection
 - Immune activation
 - Chronic inflammation
 - Side effects of antiretroviral therapy

Omega-3 polyunsaturated fatty acids (PUFA)

Docosahexaenoic acid

Eicosapentaenoic acid

Biological role

- important structural components of cell membranes
- production of anti-inflammatory mediators

Omega-3 PUFA and CVD

Beneficial effects of omega-3 PUFA

- reduce triglyceride and cholesterol
- reduce insulin resistance
- anti-coagulation
- anti-inflammatory effects

Effect on CVD surrogate markers

- Carotid intima media thickness (CIMT)
- endothelial function
- platelet activation & aggregation

Effective protection from cardiac events?

- Controversial findings
- Fish consumption might be more beneficial than supplementation

Objectives

- To assess in PLHIV
 - red blood cell (RBC) omega-3 content, which reflects dietary intake of omega-3 PUFA
 - progression of carotid intima media thickness (CIMT), a marker of atherosclerosis

Hypothesis

 Low RBC omega-3 content is associated with enhanced progression of CIMT over time

Study design

- Prospective cohort study
- Sub-study of the Canadian HIV Vascular Study following 300 PLHIV for a period of five years
- Patients had yearly follow up to measure CIMT
- Erythrocyte samples were taken at one time point during the follow-up period

Participants

- Inclusion criteria
 - HIV infected out-patients
 - o male, female, transgender
 - age at study entry >35 years
 - participating in the Canadian HIV vascular study
- Exclusion criteria
 - less than two CIMT measurements during the study period
 - o no blood sample available for RBC collection

Measurements


- Clinical assessments (yearly)
 - o clinical risk factors for CVD (age, sex, ethnicity, obesity, smoking,...)
 - fasting lipids and glucose
 - o immune and viral status
 - o medication exposure,

- CIMT (yearly)
 - Twelve-segment mean maximal CIMT
 by high-resolution carotid artery ultrasound
 - Mean yearly change in CIMT (dCIMT) was calculated

Measurements

- RBC omega-3
 - Total lipids extracted from RBC
 - Gas chromatography (62 fatty acids from C14:0 to C22:6n3)
 - Omega-3 index = EPA + DHA (in % of total fatty acids)

Statistics

- o t-test, Wilcoxon test, Spearman correlations
- Regression models
- SPSS v. 20 (IBM, Armonk, NY) and SAS Enterprise Guide 4.3 (SAS Institute, Cary, NC)
- p<0.05 statistically significant

Clinical characteristics

Characteristic	Value	
n	69	
Age, y	49.4 ± 8.8	
Male, % (n)	88.4% (61)	
Current smokers, % (n)	30.4% (21)	
Previous smokers, % (n)	36.2% (25)	

Values are mean $\pm\,\text{SD,}$ median (range) or % of participants

Characteristic	Value
Body mass index, kg/m ²	25.0 ± 4.2
Overweight (BMI 25-29.99)	40.0% (26/65)
Obese (BMI ≥ 30)	9.2% (6/65)
Waist circumference, cm	90.7 ± 12.6
Central obesity	17.8% (8/45)
(men >102 cm, w >88 cm)	

Clinical characteristics

Characteristic	Reference Range	Value
Systolic BP, mmHg	< 120	125 ± 17.3
Diastolic, mmHg	< 80	$\textbf{80.1} \pm \textbf{10.8}$
Fasting glucose, mmol/L	3.8-6.0	5.30 (2.10-8.10)
Total cholesterol, mmol/L	<5.5	4.86 (2.59-8.43)
LDL cholesterol, mmol/L	<3.3	$\textbf{2.61} \pm \textbf{1.00}$
HDL cholesterol, mmol/L	>0.9	1.19 (0.47-3.02)
Triglycerides, mmol/L	<2.0	1.96 (0.57-8.26)

Characteristic	Value	
Diabetes, % (n/n)	2.9% (2/69)	
Hypertension, % (n/n)	31.9% (22/69)	
Lipid drugs, % (n/n)		
Fibrates	10% (7/69)	
Statins	20% (14/69)	
Framingham CVD Risk		
Low (<10%)	56.5% (39/69)	
Intermediate (10-20%)	31.9% (22/69)	
High (≥ 20%)	11.6% (8/69)	

HIV specific data

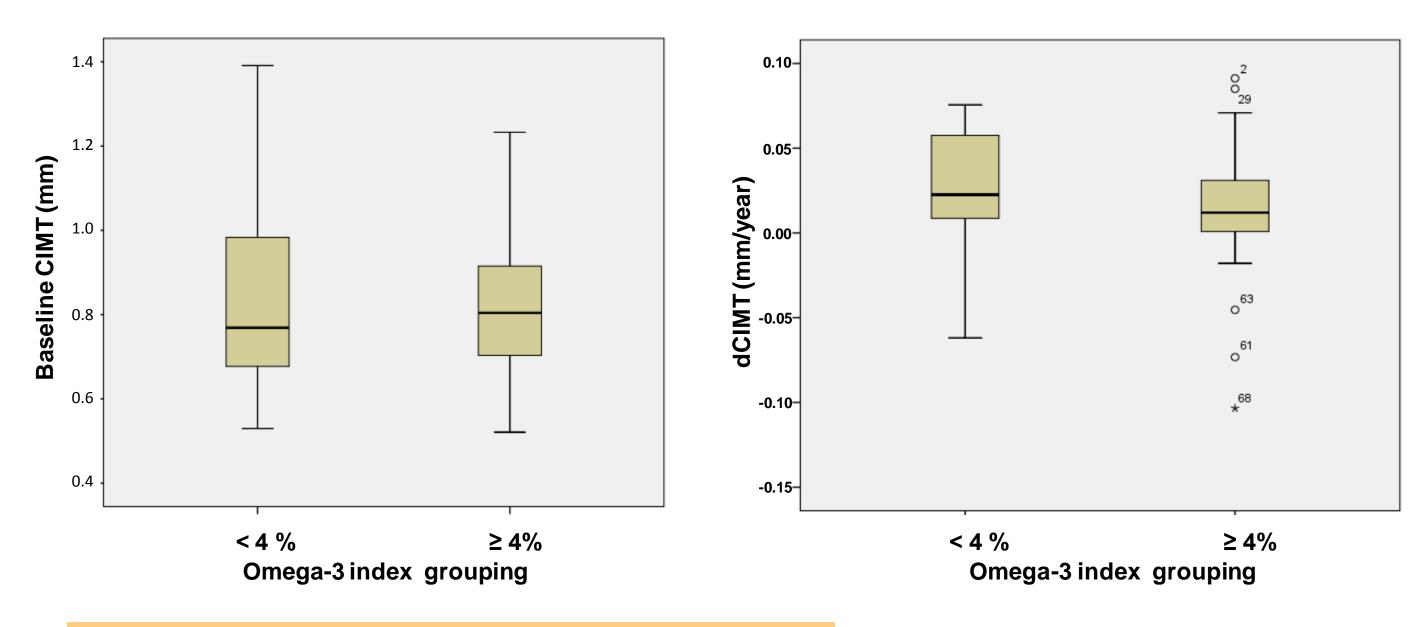
Characteristic	Value	
n	69	
HIV Risk factor		
MSM	64.7% (44/68)	
Bi/heterosexual	22.1% (15/68)	
IV drug use	5.9% (4/68)	
Other	13.2% (9/68)	
Peak viral load, log10 copies/mL	4.99 (1.81-6.15)	
CD4 count, cells/mm ³		
Baseline	650 (100-1,520)	
Nadir	150 (10-990)	

APT ovpocuro	% of patients (n)	
ART exposure	current	ever
Protease Inhibitors		
Lopinavir (LPV)	20% (14)	26% (17)
Atazanavir (ATV)	10% (7)	10% (7)
NNRTI		
Efavirenz (EFV)	39% (27)	57% (39)
Nevirapine (NVP)	9% (6)	10% (7)
NRTI		
Abacavir (ABC)	39% (27)	49% (34)
Zidovudine (AZT)	25% (17)	58% (40)
Stavudine (d4T)	6% (4)	41% (28)
Tenofovir (TNF)	29% (20)	38% (26)

Values are median (range) or % of participants

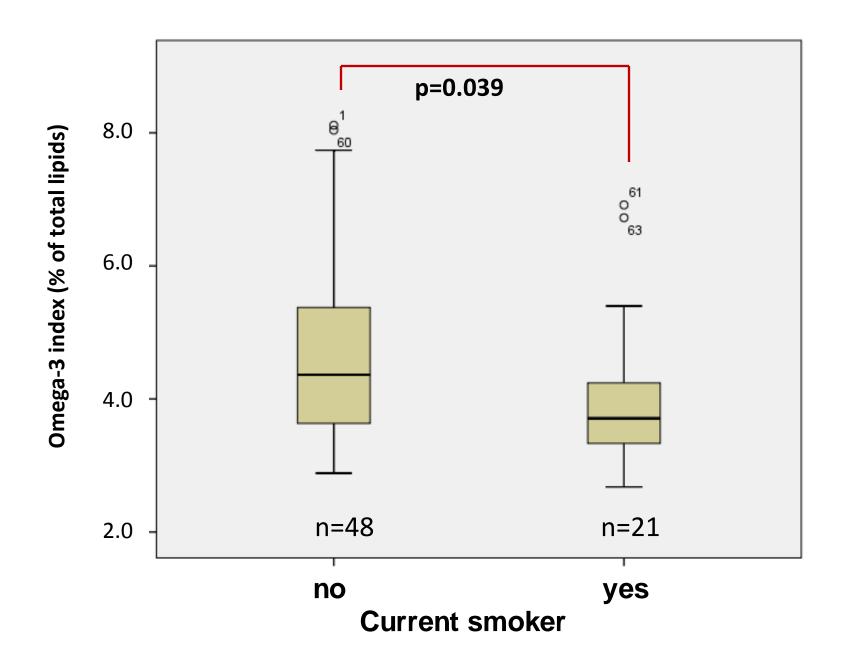
Omega-3 index and CIMT

Parameter	Value	
n	69	
Omega-3 index, % of total lipids	4.4 (2.7-8.1) %	
Omega-3 index, % (n)		
Low (<4%)	49.3% (34)	
Intermediate (4-8%)	46.4% (32)	
Desirable (>8%)	4.3% (3)	
CIMT at baseline, mm	$\boldsymbol{0.82 \pm 0.19}$	
Change in CIMT, mm/year	0.018 ± 0.036	


Values are mean \pm SD, median (range) or % of participants

Proposed Risk Zones for the Omega-3 Index

Percent of EPA+DHA in RBC


CIMT by RBC omega-3 index

No significant difference between the groups

Omega-3 index and risk factors for atherosclerosis

Lower erythrocyte omega-3 index in current smokers vs. non-smokers (Wilcoxon test)

Omega-3 index was

- not different between men and women
- not correlated with age, or other risk factors for CVD

Regression analysis

Mc	del	Unstandardized coefficient B	p-value
1	(Constant)	0.028	0.000
	Omega-3 index <4%	0.007	0.026
2	(Constant)	0.026	0.000
	Omega-3 index <4%	0.008	0.017
	Framingham Risk Score	0.021	0.267

Cases were weighted by years of follow-up

Summary

- 49% of the study participants had low RBC omega-3 index
- Omega-3 was lower in smokers but not associated with other CVD risk factors
- No significant difference in CIMT or dCIMT between patients with omega-3 index <4% and those with ≥4%
- Regression model
 - low omega-3 index was associated with faster progression of CIMT over time
 - association persisted after adjusting for the Framingham risk score

Conclusion

- □ Low RBC omega-3 index is a risk factor for faster progression of CIMT and therefore of atherosclerosis in PLHIV even when correcting for Framingham risk score
- ☐ Similar to the general population, increased intake of omega-3 PUFA might be a way to reduce CVD risk in PLHIV
- ☐ This requires further investigation

Thank you!

- Marek Smieja and all other investigators of the Canadian HIV Vascular Study
- All study participants
- Research Technicians
 - Nita Prayitno
 - Lyn Hillyer
- Study Coordinators
 - Seham Noureldin
 - Julia Bonengel

Gilead Sciences Canada