A TRIMERIC HIV-1 GP140-BAFF FUSION CONSTRUCT ENHANCES MUCOSAL ANTI-TRIMERIC HIV-1 GP140 IGA IN MICE

Jun Liu¹, Kiera Clayton², Yu Li², Matthew Haaland², Jordan Schwartz², Hampavi Sivanesan², Aamir Saiyed², Wei Zhan², Feng Yun Yue², James Rini³, Mario Ostrowski¹,²

¹ Division of Clinical Sciences, University of Toronto;
² Department of Immunology, University of Toronto;
³ Department of Biochemistry, University of Toronto;
Background

• A safe and effective HIV-1 vaccine is needed to ultimately control HIV-1 pandemic

• Broadly neutralizing antibodies (bNAbs) can prevent HIV-1 infection
 (sterilizing immunity) and thus are the holy grail for HIV-1 vaccine development

• Non-broadly neutralizing antibodies (nbNAbs) can also prevent HIV-1 infection

• To elicit protective antibodies (bNAbs and nbNAbs), the target antigen, HIV-1 Env, should mimic the native trimer conformation.
Klein JS et al. Plos Patho, 2010, 6:e1000908
https://www.aidsreagent.org/program_info.cfm
Background

• HIV-1 predominantly transmits through genital/rectal mucosa.

• Mucosal IgA is the dominant Ig subtype at most mucosal surface (except genital mucosa) and is vital for prevention of microbial transmucosal infections, including HIV-1.

• HIV-1 Env is weak in immunogenicity and needs potent adjuvants to elicit strong and long-lasting Ab responses.

• Three TNFSF members, CD40L, BAFF (B cell activating factor of the TNF family), APRIL (a proliferation-inducing ligand), are costimulatory molecules for antibody responses through promoting B cell proliferation and survival, Ig isotype switch (IgM→IgG and IgA), and somatic hypermutation (affinity maturation).
Hypothesis

A trimeric fusion construct of HIV-1 Env and APRIL/BAFF/CD40L (Env-A/B/C trimer) can improve anti-HIV-1 Env antibody responses.
Trimerized fusion protein constructs

control constructs

- flexible GGGSGGGG linker
- FLAG: 3xFLAG tag
- TD: trimerization domain
- THD: TNF homology domain
Questions

• Will the fusion constructs form trimer?
• Will the fusion constructs keep the native conformation of HIV-1 Env?
• Can the fusion constructs enhance antibody responses against HIV-1 Env, esp. at mucosal surface?
Transfect HEK293T cells

Supernatant subjected to SDS-PAGE, Blue native PAGE, immunoprecipitation followed by Western blot
Fusion constructs form trimers and keep HIV-1 Env native conformation

Blue native PAGE

Trimer

Dimer

Monomer

1236kDa

1048kDa

720kDa

480kDa

242kDa

146kDa

Controls

Env Antibodies

Staining materials

Negative

gp140-FLAG

gp140

gp140-APRIL

gp140-BAFF

gp140-CD40L

gp140-FOLDON

gp140

Credit: Clayton K, et al.
Questions

• Will the fusion constructs form trimer?
• Will the fusion constructs keep the native conformation of HIV-1 Env?
• Can the fusion constructs enhance antibody responses against HIV-1 Env, esp. at mucosal surface?
Vaccination regimen

- 6 groups (4 mice/group):
 - gp140
 - gp140-FOLDON
 - gp140-CD40L
 - gp140-BAFF
 - gp140-APRIL
 - Naïve (PBS)
- DNA: 100 µg in 100µl PBS/mouse/vaccination, 50µg(µl) per hing leg muscle per mouse
- Protein: 20µg in 100 µl PBS mouse/vaccination, i.p.

Sampling: Fecal pellet, vaginal lavage, blood sera

Sacrifice mouse Sampling: Fecal pellet, vaginal lavage, blood sera, spleen

Detection of Abs: Kinetic ELISA using gp140-FOLDON as coating antigen
Kinetic ELISA

- Take OD\(_{650}\) reading every 15s for the first 3 min after adding substrate, and calculate slope (\(\Delta mOD_{650}/\text{min}\)) from linear regression.
- More accurate in Ab quantification than endpoint ELISA: slope is proportional to concentration of antigen/antibody during initial stage of reaction.
- No need to do serial dilutions of samples.
- Standardization of mucosal gp140-specific Ab: \(\Delta mOD_{650}/\text{min/total IgG or IgA} (\Delta mOD_{650}/\text{min/ng·mL}^{-1}).\)
HIV-1 trimeric gp140-specific antibody responses - sera

Sera gp140-specific IgG

Sera gp140-specific IgA

- Naive (PBS)
- gp140-APRIL
- gp140-BAFF
- gp140-CD40L
- gp140-foldon
- gp140

Week 9, Week 11, Week 13
HIV-1 trimeric gp140-specific antibody responses - vaginal lavage

Vaginal gp140-specific IgG

Vaginal gp140-specific IgA

- **Week 9**
- **Week 11**
- **Week 13**

Graphs:
- Vaginal gp140-specific IgG
- Vaginal gp140-specific IgA
- Data points for each week and treatment group.
HIV-1 trimeric gp140-specific antibody responses-fecal pellet

Fecal gp140-specific IgG

Fecal gp140-specific IgA

- **Naive (PBS)**
- **gp140-APRIL**
- **gp140-BAFF**
- **gp140-CD40L**
- **gp140-foldon**
- **gp140**
Conclusions

• Fusion constructs, gp140-ARPII/BAFF/CD40L, form trimers and keep native conformation of HIV-1 Env.

• gp140-BAFF can enhance trimeric HIV-1 Env-specific antibody responses, esp. mucosal IgA responses.

• gp140-APRIL and gp140-CD40L can not enhance trimeric HIV-1 Env-specific antibody responses.
Ongoing experiments and future directions

- HIV-1 neutralization
- Other vaccination platforms using gp140-BAFF as immunogen? (microneedle, nanoparticles, etc.)
Acknowledgement

Dr. Ostrowski Lab (UofT)
Kiera Clayton
Yu Li
Matthew Haaland
Jordan Schwartz
Hampavi Sivanesan
Aamir Saiyed
Wei Zhan
Dr. Elizabeth Yue
Dr. Sonya MacParland
Dr. Nur-ur-Rahman
Wade Coutinho
Shariq Mujib
Wayne Zhao
Ali Fawaz
Ardalan Bozorgzad
Matthew Douglas-Vail
Dr. Mario Ostrowski

Dr. James Rini (UofT)

Dr. Kelly MacDonald Lab (UofT)

Dr. Rupert Kaul Lab (UofT)

Funding Agency: